
ALGEBRAIC CURVES
SOLUTIONS SHEET 8

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let r ≥ 1, P ∈ Ar
k. Call O := OP (Ar

k) and m the maximal ideal of
O.

(1) Compute χ(n) = dimk(O/mn) for r = 1, 2.
(2) For arbitrary r, show that χ(n) is a polynomial of degree r in n with leading

coefficient 1/r!.

Solution 1. Let us first make a general observation, which will be helpful for
points (1) and (2). First of all, as all local rings of Ar are isomorphic (using
translations, see Exercise 1 on Sheet 4), we may assume that P = 0. Denote
R = k[x1, . . . , xr] and n = (x1, . . . , xr). We want to simplify O/mn by using point
(3) of Exercise 2 on Sheet 1; for S = R \ n we have

O/mn = S−1R
/
S−1nn ∼= (S/nn)−1

(
R
/
nn
)

Now note that R/nn is a local ring with maximal ideal n := n/nn: indeed, the
prime ideals of R/nn correspond to prime ideals of R containing nn, and n is the
only prime ideal containing nn. Note also that S/nn ⊆ (R/nn) \ n. In particular,
all elements of S/nn (recall that this denotes the image of S under the quotient
map) are already units in R/nn. As localizing at a set of units has no effect, we
hence obtain

O/mn ∼= R
/
nn.

Hence, we reduced to working with R = k[x1, . . . , xr] and n = (x1, . . . , xr).

(1) • Let r = 1. By the above, we have

O/mn ∼= R
/
nn = k[x]

/
(xn)

It is then straightforward to see that on the RHS, 1, x, . . . , xn−1 forms
a k-basis, and thus we get χ(n) = n.
• Let r = 2. Again by the above, we have

O/mn ∼= R
/
nn = k[x, y]

/
(x, y)n.

Again, we see that {xiyj}i+j<n is a k-basis. Hence we have

χ(n) = |{(i, j) ∈ Z2
≥0 | i+ j < n}| =

∑
0≤i≤n−1

(i+ 1) =
n(n+ 1)

2
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(2) As above, we have

O/mn ∼= R
/
nn = k[x1, . . . , xr]

/
(x1, . . . , xr)

n

and thus the following is a k-basis:

B := {xi1
1 · · ·xir

r | (i1, . . . , ir) ∈ Zr
≥0,

∑
j

ij < n}

Note that by introducing ir+1 = n− 1−
∑

j ij, we obtain

|B| = |{(i1, . . . , ir+1) ∈ Zr+1
≥0 |

∑
j

ij = n− 1}|.

This agrees with dimk k[x1, . . . , xr+1]n−1, which in Exercise 2 on Sheet 5
we computed to be

(
n−1+r

r

)
(as explained in the solutions for Sheet 5, you

can see this by separating n − 1 stars ∗ with r bars | and constructing a
bijection to such arrangements). Therefore, we have

χ(n) = |B| =
(
n− 1 + r

r

)
,

which is a polynomial of degree r with leading coefficient 1/r!.

Remark. There is also a way to solve the exercise inductively, with-
out computing explicitly χ(n). Denote by χr(n) the dimension over k
of OP (Ar)/mn, denote Rr = k[x1, . . . , xr] and mr = (x1, . . . , xr). You can
then construct a short exact sequence

0 −→ Rr+1
/
mn−1

r+1

·xr+1

−−−−−−→ Rr+1
/
mn

r+1

xr+1=0

−−−−−−→ Rr
/
mn

r
−→ 0.

Of course, there is some work to do to show that everything is well-defined
and exact. Taking this for granted, we then immediately obtain that

χr+1(n)− χr+1(n− 1) = χr(n).

You can then use this formula to see that if χr is a polynomial of degree r
with leading coefficient ar, then χr+1 is a polynomial of degree r + 1 with
leading coefficient ar

r+1
.

Exercise 2. Find the multiple points and the tangent lines at the multiple points
for each of the following curves:

(1) X4 + Y 4 −X2Y 2

(2) X3 + Y 3 − 3X2 − 3Y 2 + 3XY + 1
(3) Y 2 + (X2 − 5)(4X4 − 20X2 + 25)

Solution 2. In general, one finds the multiple points by solving the system of
equations

(*)

{
F (x, y) = 0
∂F
∂X

(x, y) = ∂F
∂Y

(x, y) = 0.
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(1) F (X, Y ) = X4 + Y 4 − X2Y 2. when solving (*), it becomes quickly clear
that we have to distinguish cases according to the characteristic.

char k = 2 : In this case both partial derivatives are 0, so every point of F is a
multiple point. One can also see this by writing

F (X, Y ) = (X2 +XY + Y 2)2.

To compute the points on F , as F is homogeneous, we can dehomoge-
nize with Y = 1 and find the roots of X2+X +1. These are precisely
the primitive 3rd roots of unity, i.e. ζ and ζ2 (where ζ is an arbitrary
choice of primitive 3rd root of unity). Hence we have

F (X, Y ) = (X − ζY )2(X − ζ2Y )2,

i.e. F is the union of two double lines through the origin. So at (0, 0),
we have two double tangent lines, and at any other point we have one
double tangent line.

char k = 3 : In this case we see that the solutions to (*) are precisely points (x, y)
with x2 + y2 = 0. As in characteristic 3 we have

F (X, Y ) = (X2 + Y 2)2,

all of these point lie on F and thus are multiple points. Furthermore,
if i denotes a primitive 4th root of unity, then we see

F (X, Y ) = (X + iY )2(X − iY )2.

Hence the picture is similar to the case before: at (0, 0) we have two
double tangent lines, and at any other point we have one double tan-
gent line.

char k ̸= 2, 3 : In this case we see that the only solution to (*) is (0, 0), so this is the
only multiple point. To find the tangent lines, we need to factor the
homogeneous polynomial F (X, Y ) into linear terms. To do this, we
can dehomogenize to Y = 1 and compute the roots of X4 − X2 + 1.
These are precisely ζ,−ζ, ζ−1,−ζ−1 where ζ is a choice of primitive
6th root of unity (in other words, the roots of X4−X2+1 are precisely
the primitive 3rd and 6th roots of unity). Hence we have

F (X, Y ) = (X − ζY )(X + ζY )(X − ζ−1Y )(X + ζ−1Y ),

i.e. there are four simple tangent lines at (0, 0).

(2) F (X, Y ) = X3 + Y 3 − 3X2 − 3Y 2 + 3XY + 1. Again, solving (*) shows
that we have to distinguish cases.

char k = 3 : In this case both partial derivatives vanish, so all points of F are
multiple points. We can also see this by writing

F (X, Y ) = (X + Y + 1)3.
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In particular, at every point of F we have the triple tangent line X +
Y + 1.

char k ̸= 3 : Let us write down (*) in this case

x3 + y3 − 3x2 − 3y2 + 3xy + 1 = 0

3x2 − 6x+ 3y = 0

3y2 − 6y + 3x = 0.

This lets us write x2 = 2x − y and y2 = 2y − x. We can then also
express x3 and y3 with lower powers:

x3 = 2x2 − xy = 4x− 2y − xy

y3 = 2y2 − xy = 4y − 2x− xy.

Plugging all of this into F (x, y) = 0, we obtain the equation

xy − x− y + 1 = 0,

i.e. (x−1)(y−1) = 0. So either x = 1 or y = 1, and then the equations
for the partial derivatives force both of them to be equal to 1. One
easily checks that (1, 1) is indeed a solution to (*), so this is the unique
multiple point of F .
To determine the tangent lines at (1, 1), we compute

F (X + 1, Y + 1) = 3XY +X3 + Y 3.

Therefore, (1, 1) is a double point with two distinct tangent linesX = 0
and Y = 0 (i.e. it is a node).

(3) F (X, Y ) = Y 2 + (X2 − 5)(4X4 − 20X2 + 25). Attempting to solve (*)
reveals which characteristics we need to treat differently.

char k = 2 : In this case we have

F (X, Y ) = (X + Y + 1)2,

so every point of F is a double point with one double tangent line
X + Y + 1.

char k = 5 : In this case we have

F (X, Y ) = Y 2 −X6.

It is then straightforward to see that the only multiple point is at
(0, 0), where F has one double tangent line Y = 0.

char k ̸= 2, 5 : From ∂F
∂Y

= 2Y we obtain that y = 0, and then we need to solve

0 = (x2 − 5)(4x4 − 20x4 + 25) = (x2 − 5)(2x2 − 5)2.

The solutions to this are precisely {±
√
5,±

√
5/2}. To see which one

of those are multiple points, note that by writing G(X) = F (X, 0), we
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have ∂F
∂X

= ∂G
∂X

= G′, and so the multiple points of F correspond to
the multiple roots of G (recall that for a polynomial G in one variable,
x is a multiple root if and only if G(x) = G′(x) = 0). From the above

factorization, it is clear that these are ±
√

5/2, i.e. F has the multiple

points (0,±
√

5/2). In fact, they are double points, as the roots of G
are double (and not triple), and because of the Y 2 term.

Finally, to compute the tangent lines at (0,±
√
5/2), we have to com-

pute the second homogeneous part of F (X ±
√

5/2, Y ). To do this
efficiently, we take the factorization

F (X, Y ) = Y 2 − 2(X2 − 5)(X −
√

5/2)2(X +
√

5/2)2

and we plug-in X = ±
√

5/2 fpr every factor which doesn’t vanish at

±
√

5/2. This gives

F2(X ±
√

5/2, Y ) = Y 2 − 50X2 = (Y −
√
50X)(Y +

√
50X).

Hence F has two simple tangent lines at it’s multiple points.

Exercise 3. Let T : A2
k → A2

k be a polynomial map, Q ∈ A2
k and P = T (Q). If T

is written component-wise as (T1, T2), the Jacobian matrix of T at Q is defined as
JQ(T ) = (∂Ti/∂Xj(Q))1≤i,j≤2.

(1) Show that mQ(F
T ) ≥ mP (F ).

(2) Show that if JQ(T ) is invertible, then mQ(F
T ) = mP (F ).

(3) Show that the converse of the previous statement is false.

Solution 3. Let us write T as a column vector, i.e. T =
(
T1

T2

)
. The key to this

exercise is the following observation: for any point Q = (x, y) ∈ A2, we can write
T (X + x, Y + y) as

T (X + x, Y + y) = T (x, y) + J(x,y)(T ) ·
(
X
Y

)
+
(
X iY j-terms with i+ j ≥ 2

)
.

In other words, both components of T (X + x, Y + y)− T (x, y)− JQ(T ) ·
(
X
Y

)
are

elements of (X, Y )2 ⊆ k[X, Y ]. It suffices to prove this componentwise, i.e. that
for all S ∈ k[X, Y ] we have

STQ(X, Y ) = S(X + x, Y + y)− S(x, y)−
(
∂S

∂X
(x, y)

)
·X −

(
∂S

∂Y
(x, y)

)
· Y ∈ (X, Y )2.

This now just follows from the simple observation that STQ(0, 0) = ∂S
TQ

∂X
(0, 0) =

∂S
TQ

∂Y
(0, 0) = 0, and these are precisely the coefficients of 1, X, Y in STQ(X, Y ).

(1) Let us write Q = (xQ, yQ) and P = T (Q) = (xP , yP ). By the above, we
have

T (X + xQ, Y + yQ) = T (xQ, yQ) + S(X, Y ) = P + S(X, Y )
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where if we write S =
(
S1

S2

)
, then S1 and S2 have no constant term. Let

us denote by TP resp. TQ translation by P resp. Q, i.e TP (X, Y ) =
(X + xP , Y + yP ) and similarly for Q. Then we can rephrase the above by
writing

T ◦ TQ = TP ◦ S.

To compute the multiplicity of F T at Q, we have to compute the multiplic-
ity of (F T )TQ , i.e. compute the minimal degree of monomials appearing in
it. It is then straightforward to see that

(F T )TQ(X, Y ) = F T◦TQ(X, Y ) = F TP ◦S(X, Y ) = F TP (S(X, Y ))

As the components of S(X, Y ) have no constant term, the mnimal degree
of monomials in F TP (X, Y ) can only go up if we plug-in S(X, Y ). In other
words, we conclude that

mQ(F
T ) = m(0,0)(F

TP ◦S) ≥ m(0,0)(F
TP ) = mP (F ).

(2) By the general facts explained at the start of the solution, we can write

S(X, Y ) = JQ(T ) ·
(
X
Y

)
︸ ︷︷ ︸

L(X,Y ):=

+R(X, Y )

where the components R1, R2 of R are in (X, Y )2. Let m = mP (F ) and
consider the degree m part Fm of F TP . Then we have

Fm(S(X, Y )) = Fm(L(X, Y ) +R(X, Y )) = Fm(L(X, Y )) + (monomials of degree > m) .

So the only way that we could have m(0,0)(F
Tp◦S) > m(0,0)(F

TP ) is when
Fm(L(X, Y )) = 0, leaving behind only monomials with higher order. But
if JQ(T ) is inveritble, then precomposing with L is an automorphism of

k[X, Y ] (with inverse given by precomposing with JQ(T )
−1 ·

(
X
Y

)
). Hence

in this case we have Fm(L(X, Y )) ̸= 0, so that

m(0,0)(F
TP ◦S) = m = mP (F ).

(3) A counterexample is given by F = Y 2 − X3, P = Q = (0, 0), T (X, Y ) =

(X2, Y ). Then mQ(F
T ) = mP (F ) = 2 but JQ(T ) =

(
0 0
0 1

)
is not invert-

ible.

Exercise 4. Let n ≥ 2 and F ∈ k[X1, . . . , Xn]. Consider V (F ) ⊆ An
k the associ-

ated hypersurface and P ∈ V (F ).

(1) Define the multiplicity mP (F ) of F at P .
(2) If mP (F ) = 1, define the tangent hyperplane of F at P .
(3) Can you define tangent hyperplanes for F = X2+Y 2−Z2 at P = (0, 0, 0)?
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(4) Assume that F is irreducible. Show that, for n = 2 (curves), V (F ) has
finitely many multiple points. Is this true for n > 2?

Solution 4.

(1) Let P = (0, . . . , 0). We can define mP (F ) as in the plane curve case. It is
the smallest degree m of a summand in the decomposition of F into linear
forms. Then for a general P , mP (F ) = m0(F

TP ) where TP is translation
by P .

(2) If mP (F ) = 1, then F T = F1 + . . . . The tangent hyperplane of F at P is
V (F1).

(3) In this example, mP (F ) = 2, but we cannot factorize F2 = F into a product
of linear forms, as F is irreducible in k[X, Y, Z]. So in higher dimensions,
the local picture around multiple points is more complicated than simply
having unions of lines resp. hyperplanes. Nonetheless, it might be useful
to look at V (Fm), i.e. the vanishing locus of the lowest degree form. In
fact, this is called the tangent cone of F at a point. While 1–dimensional
cones are always just unions of lines, higher dimensional cones are more
complicated. In our case, the tangent cone V (F2) of F at (0, 0) is F itself,
and you can picture it as a circular double cone through the origin:

(4) Let F be irreducible. The locus of multiple points is given by V (F, ∂XF, ∂Y F ),
where ∂XF resp. ∂Y F denote the partial derivatives of F . If V (F, ∂XF, ∂Y F )
is infinite, it must have dimension ≥ 1, but as dimV (F ) = 1, it must have
dimension equal to 1. By point (4) of Exercise 1 on Sheet 7, we then obtain
V (F ) = V (F, ∂XF, ∂Y F ). In particular, we have

∂XF, ∂Y F ∈ I(V (F )) =
↑

F irreducible

(F )

But ∂XF, ∂Y F are of smaller degree than F , and thus we must have ∂XF =
∂Y F = 0. In characteristic 0, this gives that F is constant, and thus not
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a curve (by definition). On the other hand, if char k = p, then the partial
derivatives can only vanish simultaneously if F is of the form

F (X, Y ) = G(Xp, Y p)

for some G ∈ k[X, Y ]. But then if we write G =
∑

i,j Gi,jX
iY j and G1/p :=∑

i,j G
1/p
i,j X

iY j (as k is algebraically closed, we can take p-th roots), we
obtain

F (X, Y ) = (G1/p(X, Y ))p,

so F is not irreducible, contradiction.
For n > 2, we have a counterexample given by taking the product of any

irreducible singular curve with A1. That is, if F ∈ k[X, Y ] is an irreducible
curve with a multiple point P = (xP , yP ), then considering F as an element
of F ∈ k[X, Y, Z], we obtain an irreducible hypersurface where every point
of the form (xP , yP , z) is multiple. However, the same proof as above shows
that the locus of multiple points V (F, ∂Xi

F | 1 ≤ i ≤ n) is always a strict
closed subset of V (F ), i.e. it has codimension at least 1.

Exercise 5. Let R = k[ϵ]/(ϵ2) and φ : R → k the k-algebra homomorphism
sending ϵ to 0 (R is often called the ring of dual numbers). Let F ∈ k[X, Y ]
irreducible, P ∈ V (F ), mP ⊆ Γ(F ) the corresponding maximal ideal and θP :
Γ(F )→ Γ(F )/mP ≃ k the associated k-algebra homomorphism.

(1) Suppose that P is a simple point. Show that there is a bijection between
the tangent line to F at P and {θ ∈ Homk−alg(Γ(F ), R) | φ ◦ θ = θP}.

(2) What happens for multiple points (for instance, F = Y 2−X3, P = (0, 0))?

Solution 5.

(1) Denote P = (xP , yP ) and by TP translation by P . Note that as F is
irreducible, we have Γ(F ) = k[X, Y ]/(F ). Denote by X and Y the classes
of X resp. Y in Γ(F ). Also, by abuse of notation, denote the class of ϵ
inside R by ϵ as well.

From the isomorphism theorems, k-algebra homomorphisms from Γ(F )
to R correspond to k-algebra homomorphisms from k[X, Y ] to R sending
F to 0.

Let θ : Γ(F ) → R be a k-algebra homomorphism such that φ ◦ θ = θP .
We then obtain

xP = θP (X) = φ ◦ θ(X)

and similarly yP = φ ◦ θ(Y ). Hence, θ is of the form

θ : Γ(F )→ R

X 7→ xP + aϵ, Y 7→ yP + bϵ
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for some a, b ∈ k. Now notice the following: we have

0 = θ(F (X,Y ) = F (θ(X), θ(Y )) = F (xP + aϵ, xQ + bϵ) = F TP (aϵ, bϵ).

Now by writing F = F1 + F2 + · · · , we obtain

0 = F1(aϵ, bϵ) + F2(aϵ, bϵ) + · · ·
= F1(a, b)ϵ+ F2(a, b)ϵ

2 + · · ·︸ ︷︷ ︸
=0

= F1(a, b)ϵ.

Therefore, it follows that (a, b) ∈ V (F1), i.e. (a, b) is a point on the tangent
line of F at P .

In conclusion, if we denote

T Zar
P (F ) := {θ ∈ Homk−alg(Γ(F ), R) | φ ◦ θ = θP}

and

prϵ : R→ k

a0 + a1ϵ 7→ a1,

we obtain a map

Φ: T Zar
P (F )→ V (F1)

θ 7→ (prϵ(θ(X)), prϵ(θ(Y ))).

To obtain a map in the reverse direction, fix (a, b) ∈ V (F1). We can then
define a morphism of k–algebras by

Θ: k[X, Y ]→ R

X 7→ xP + aϵ, Y 7→ yP + bϵ.

By the same computation as above, we then have Θ(F ) = F (xP + aϵ, yP +
bϵ) = 0, and thus we obtain a morphism of k–algebras

θa,b : k[X, Y ]→ R

X 7→ xP + aϵ, Y 7→ yP + bϵ.

It is then clear that θ ∈ T Zar
P (F ). Hence we obtain a map

Ψ: V (F1)→ T Zar
P (F )

(a, b) 7→ θa,b,

and it is straightforward to check that the two constructions are muttually
inverse.

(2) For the cusp, for all a, b ∈ k2, F (aϵ, bϵ) = 0 because ϵ2 = 0. Hence, we can
perform the above construction to obtain a bijection between T Zar

(0,0)(F ) and

k2.
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Remark. The space T Zar
P (F ) is called the Zariski tangent space of F at P . One

can in fact endow it with a natural vector space structure, compatible with the
above bijections. It is in fact always the case that for F ∈ k[X, Y ], we have
dimk T

Zar
P (F ) = 1 if and only if P is a simple point. Note that one can define

T Zar
P (V ) for an affine algebraic variety V ⊆ An in the same way. In this case, it

corresponds to the affine subspace of An generated by all the tangent directions of
V at P .
The definition of T Zar

P (F ) has actually a very concrete motivation coming from
differential geometry, let me try to explain it: the most important fact about affine
algebraic sets is that they are, up to isomorphism, in a one-to-one correspondence
with finitely generated, reduced k-algebras, and this correspondence is compatible
with morphisms:

{affine algebraic sets}
/
∼=

1:1←→ {finitely generated, reduced k-algebras}
/
∼=

see Proposition 2.5 in the lecture notes (for those familiar with the language, the
precise mathematical term for this is an equivalence of categories). In words, an
affine algebraic set V corresponds to its coordinate ring Γ(V ), i.e. loosely speaking
the space of functions V → k. Now what happens if we drop the word ’reduced’
from the right hand side above? Could we still regard some non-reduced, finitely
generated k-algebra as the space of functions from some geometric object to k? In
fact, we can!
For the non-reduced k-algebra R = k[ϵ]/(ϵ2), you should think of it as the space
of functions from an infinitesimally small neighborhood around 0 (very loosely
speaking, in R, think of the open interval (−ϵ, ϵ) as ϵ → 0+). Remember how in
Analysis 1 and 2, there were always these proofs where terms with an ϵ2 can be
thrown away when ϵ→ 0? Well here it’s the same idea, only that for us, we in fact
have ϵ2 = 0 in R. Let me denote by Iϵ this infinitesimally small interval around 0
(without really saying what it is), such that R is the space of functions from Iϵ to
k. Then what does

T Zar
P (F ) = {θ ∈ Homk−alg(Γ(F ), R) | φ ◦ θ = θP}

correspond to geometrically? Well, if we take for granted that there still is a
correspondence as above for non-reduced things, then Homk−alg(Γ(F ), R) should
correspond to Hom(Iϵ, F ), i.e. maps from Iϵ into the curve F . The condition φ◦θ =
θP then translates into the condition that 0 ∈ Iϵ is mapped to P . So geometrically,
we can regard T Zar

P (F ) as the set of funtions from a small neighborhood around
0 to F , which map 0 to P . Does that ring a bell? It is supposed to model a
construction from differential geometry, where if you have a point P in a smooth
manifold M , each tangent vector v ∈ TPM can be obtained from a smooth curve
γ : (−ϵ, ϵ)→M sending 0 to P , such that v = γ′(0).
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